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Abstract
On geological time-scales (≥≥≥≥≥106 years), the global geochemical cycles of carbon and silicon
are coupled by the drawdown of atmospheric CO2 through chemical weathering of Ca- and
Mg-silicate minerals in continental rocks. Rivers transport the soluble products of weather-
ing (cations, alkalinity and silicic acid) to the oceans, where they are utilized by marine
ecosystems. On decadal to glacial–interglacial time-scales, however, large biotic fluxes and
storages of Si within terrestrial and freshwater ecosystems need to be taken into account.
Recent studies have emphasized the importance of Si-accumulating plants, which deposit
significant amounts of amorphous hydrated silica in their tissues as opal phytoliths. These
include grasses, sedges, palms, some temperate deciduous trees and conifers, and many
tropical hardwoods. Landscapes dominated by accumulator plants, such as tropical rainfor-
ests, grasslands, herbaceous wetlands and bamboo forests, act as ‘silica factories’. Important
‘silica bioengineers’ in freshwater ecosystems comprise diatoms, sponges and chrysophytes.
This paper reviews the biological role of Si in higher plants, the impact of vegetation on
rates of chemical weathering, the fluxes of Si through catchment ecosystems, lakes and
rivers, and the potential contribution of new geochemical and isotopic tracers to Si bio-
geochemistry. Multiproxy investigations of lake sediments will provide novel insights into
past variations in Si biocycling from terrestrial to aquatic realms on 10–106 year time-scales.
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Introduction

‘The ability of some plants to accumulate certain major elements, such as Si, Al, Ca, Mn, and Fe has geologic
implications. Many kinds of vegetation, especially in the tropics, contain several percent silica dry weight. Some 10 to
20 tons dry weight of new growth per acre is added each year above ground in tropical jungles, and the roots add
several tons more. A forest of silica-accumulator plants averaging 2.5% silica and 16 tons dry weight new growth per
year would extract about 2000 tons of silica per acre in 5000 years – equivalent to the silica in 1 acre-ft. of basalt.
Comparison of lateritic soils with parent rock indicates that a silica-accumulator jungle could convert basalt into
lateritic soil rapidly – geologically speaking. The silica in ground water increases with depth and time in contact with
the rock, but vadose water seems inadequate to yield the silica required by such a jungle of silica-accumulator plants;
biochemical factors must therefore cause much more rapid solution of silica. Under favorable conditions, much
soluble organically derived silica may be recycled or added to ground water, but nevertheless, in tropical regions with
high rainfall and appreciable runoff, large amounts of siliceous organic debris must be swept off the forest floor into
the drainage system. On the other hand, if insoluble silicic phytoliths result from the disintegration of the vegetal litter,
the upper soil horizons may become enriched in silica from disintegrating silica-accumulator plants, where erosion
does not equal the rate of accumulation, as in many prairie and savannah soils’ (Lovering, 1959).



Biogenic silica 1437

Copyright © 2008 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 33, 1436–1457 (2008)
DOI: 10.1002/esp

This ground-breaking paper on the ‘Significance of Accumulator Plants in Rock Weathering’, by the former Chief
of Geochemical Exploration at the United States Geological Survey, Thomas Seward Lovering (Morris, 1996) must
surely rank as one of the most unjustly neglected contributions to geomorphology since World War II, or indeed of all
time. Lovering argued that biogeochemical cycling has a crucial impact on processes of soil formation and denudation
involving silicate weathering.

Unfortunately for Lovering, geochemists interested in the coupling between the terrestrial carbon and silicon cycles
bypassed his work in favour of a focus on time-scales longer than the time taken for rivers to replenish the amount of
inorganic carbon stored in the oceans (5 × 105 years: Kump et al., 2004). Viewed from a long-term, steady-state
perspective, the most important processes are weathering of rock minerals, oxidation of organic matter contained in
ancient sediments, burial of carbonates and silica in ocean sediments, and recycling of CO2 to the atmosphere by plate
tectonics (Sundquist, 1985; Berner, 1995; Berner and Berner, 1996). Drawdown of atmospheric CO2 through weather-
ing of Ca and Mg silicates is followed by flushing of the products of weathering into rivers and groundwater,
carbonate precipitation in the oceans and ocean–atmosphere exchange of CO2. These processes are exemplified by the
idealized reactions (Berner, 1995; Kump et al., 2004):

CaSiO3 + 2H2CO3 → Ca++ + 2HCO3
− + SiO2 + H2O (1)

Ca++ + 2HCO3
− → CaCO3 + H2CO3 (2)

H2CO3 → CO2 + H2O (3)

The net result of Equations 1–3 is:

CaSiO3 + CO2 → CaCO3 + SiO2 (4)

The contribution of organic acids to weathering is implicitly included in Equation 1 because their anions oxidize to
bicarbonate in stream water (Berner and Berner, 1996). In practice, dissolution of silicate minerals is normally
incongruent, resulting in formation of secondary clays, oxides and hydroxides in addition to the production of solutes.
Hence the actual stoichiometry of the weathering reactions is significantly more complex. For example, the transfor-
mation of Ca-plagioclase feldspar (anorthite) to kaolinite can be represented by:

CaAlSi2O8 + 2H2CO3 + H2O → Al2Si2O5(OH)4 + 2HCO3
− + Ca++ (5)

(Stumm and Morgan, 1970). Further weathering results in leaching of SiO2 from the kaolinite lattice, leaving gibbsite:

Al2Si2O5(OH)4 + H2O → 2Al(OH)3 + 2SiO2 (6)

(Loughnan, 1969).
In contrast, weathering of carbonate rocks, followed by the precipitation of an equivalent amount of carbonate

minerals by marine organisms, does not result in net consumption of atmospheric CO2 (Berner, 1995; Kump et al.,
2004):

CaCO3 + H2CO3 → Ca++ + 2HCO3
− (7)

Ca++ + 2HCO3
− → CaCO3 + H2CO3 (8)

Weathering of Na and K silicates is neglected in steady-state geochemical models because the resulting drawdown of
atmospheric CO2 is deemed to be balanced by equivalent CO2-liberating processes involving seawater–basalt reactions
and reverse weathering of marine sediments (Berner et al., 1983; Berner and Berner, 1996).

To complete the long-term carbonate–silicate cycle, CO2 is returned to the atmosphere on plate-tectonic time-scales
by metamorphic decarbonation and volcanic outgassing (Berner et al., 1983). In turn, variations in atmospheric CO2

concentration influence continental weathering rates. This crucial negative feedback helps to prevent the development
of a runaway greenhouse or icehouse (Walker et al., 1981; Brady and Carroll, 1994; Berner, 1995). The terrestrial
biosphere also plays an important feedback role. According to Knoll and James (1987), Berner (1992) and Mora et al.
(1996), the spread of rooted vascular plants during the Devonian permanently reduced CO2 levels by accelerating rock
weathering. However, Si cycling by terrestrial biota (Figure 1) has not yet been explicitly incorporated into global
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Figure 1. The coupled terrestrial and marine biogeochemical cycles of silicon (from Exley, 1998): HAS, hydroxyaluminosilicates
such as allophane.

geochemical models. This is surprising because recent evolutionary syntheses have concluded that the expansion of C4

grasslands during the Miocene greatly accelerated the ‘biologically catalyzed silicate weathering process’ (Falkowski
et al., 2004), leading to rapid diversification and increased accumulation rates of both marine and freshwater diatoms
(Falkowski et al., 2004; Kidder and Gierlowski-Kordesch, 2005). These relatively large, siliceous microalgae domi-
nate the carbon export to the deep ocean (Smetacek, 1999; Yool and Tyrrell, 2003).

Most syntheses of the global carbon cycle on short (<103 years) time-scales omit its connections with silicate
weathering and terrestrial Si biocycling entirely, presumably because these processes are assumed to operate on too
long a time-scale to be relevant (Falkowski et al., 2000; Wigley and Schimel, 2000). A notable exception is Exley
(1998), who argued that biological uptake of dissolved silica drives Equation 1 to the right, thereby enhancing mineral
weathering and CO2 drawdown. Stallard (1998) examined the possible contribution of anthropogenic increases in
continental sediment storage to the ‘missing sink’ problem, concluding that burial of organic carbon in colluvial,
alluvial and reservoir sediments may result in significant removal of anthropogenic CO2 from the atmosphere. How-
ever, he did not consider other key nutrients such as Si that might be retained by the cascade of biomass, soil and
sediment storages that are found along river systems, a process termed ‘fluvial filtering’ by Meybeck and Vörösmarty
(2005).

Sitting somewhat awkwardly between these two temporal extremes is a small group of papers that examines the
potential contribution of changing weathering rates to glacial–interglacial variations in atmospheric CO2. On this time-
scale, complications arise because the total inventory of dissolved inorganic carbon in the oceans is not constant
(Archer et al., 2000; Sigman and Boyle, 2000); hence, the global carbonate–silicate system is far from steady state and
the weathering of carbonate rocks cannot be ignored (Sundquist, 1985). Investigations of glacial–interglacial varia-
tions in rock weathering have relied on measurements of geochemical or isotopic tracers in ocean sediments (Froelich
et al., 1992; Henderson et al., 1994; Oxburgh, 1998; Foster and Vance, 2006), or on modelling the changes in silicate
and carbonate weathering that would be expected to result from variations in temperature, runoff, exposed continental
land area and in some cases, ice-sheet extent (Gibbs and Kump, 1994; Kump and Alley, 1994; Munhoven and
François, 1996; Ludwig et al., 1999; Jones et al., 2002; Munhoven, 2002; Tranter et al., 2002). None of these studies
has so far considered the crucial contribution of the terrestrial biosphere to silicate weathering. Indeed, any reference
to ‘plants’ and ‘vegetation’ is conspicuously lacking.

Despite this astonishing neglect, considerable progress has been made in understanding the biological role of Si in
terrestrial organisms (Jones and Handreck, 1967; Raven, 1983; Sangster and Hodson, 1986; Takahashi et al., 1990;
Epstein, 1994, 1999; Sangster et al., 2001). Catchment-ecosystem-scale studies of Si cycling have demonstrated the
power of vascular plants to pump Si from rocks and recycle it between plant tissues, soils and sediments, from which
stored silica is released to drainage waters, or as aeolian dust, on annual or longer time-scales (Simonson, 1995;
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Clarke, 2003; Meunier, 2003). A particularly strong tradition of field-based Si biogeochemistry has developed in
France (Bartoli, 1983; Lucas et al., 1993; Alexandre et al., 1997; Meunier et al., 2001). Experiments have demon-
strated that certain crops benefit significantly from Si supplementation (Takahashi et al., 1990). In lakes, biogenic
silica (BSi) accumulation has been shown to vary with trophic status (Schelske et al., 1983; Conley et al., 1993;
Conley and Schelske, 2001), while the ability of diatoms and other Si-secreting organisms to strip dissolved silica
(DSi) from river, lake and reservoir waters is increasingly being blamed for blooms of harmful, non-siliceous algae
(Conley et al., 1993; Humborg et al., 2000).

Notwithstanding these significant advances at the organism-to-ecosystem scale, the full global significance of the
coupling between the continental biogeochemical C and Si cycles on Quaternary time-scales is still largely unrecog-
nised. In this paper, we join Exley (1998), Conley (2002), Markewitz and Richter (1998) and Struyf and Conley (in press)
in calling for the ‘bio’ in Si biogeochemistry to be taken more seriously by earth-system scientists. First, we summa-
rize the modern global pattern of net CO2 drawdown by silicate weathering estimated from geochemical analyses
of river-transport data, which provides the backdrop for studies of the impact of the continental biota on the Si cycle.
We then review the physiological and ecological literature dealing with BSi in terrestrial and freshwater ecosystems,
and point to the existence of novel geochemical and isotopic techniques that are revolutionizing our ability to trace the
pathways followed by Si from rocks and soils through plants and surface waters to sediments. Finally, we illustrate the
ways in which Late Quaternary variations in Si biocycling can be reconstructed through analyses of lake sediments.

The Global Pattern of CO2 Drawdown by Silicate Weathering

The global pattern of CO2 drawdown by silicate weathering has been estimated from the dissolved load of large rivers,
corrected for atmospheric inputs (Stallard, 1995; Kump et al., 2000). At pH values <9, DSi is predominantly trans-
ported in the form of undissociated monosilicic acid (H4SiO4), often written as Si(OH)4 (Knight and Kinrade, 2001).
The river basins with the largest total CO2 consumption fluxes are all located in the humid tropics: the Irrawady,
the Ganges, the Amazon, the Paraná and the Congo (Gaillardet et al., 1999b) (Figure 2). About 30 –35 per cent of
global CO2 consumption is attributable to chemical weathering of basalt (Dessert et al., 2003; Dupré et al., 2003).
Despite its restricted spatial distribution, basalt contains a high proportion of ferromagnesian minerals and is very
susceptible to chemical weathering by higher plants (Cochran and Berner, 1996). The remainder of the estimated CO2

flux is derived from granitoid and to a lesser extent, sedimentary rocks. In general, rapid rates of physical weathering
and erosion in areas of high relief enhance chemical weathering and CO2 consumption by continually exposing fresh

Figure 2. The drawdown of atmospheric CO2 by silicate weathering, based on the dissolved load of large rivers, corrected for
atmospheric inputs (from Gaillardet et al., 1999b).
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mineral surfaces (Summerfield and Hulton, 1994; Gaillardet et al., 1999a,b). Hence, two end-member states can be
distinguished with respect to chemical denudation (Stallard, 1995). Weathering-limited regimes occur
in steep terrain, where physical transport is capable of moving all loose debris and rates of denudation, silicate
weathering and CO2 drawdown are high, but the intensity of chemical weathering is low. In contrast, transport-limited
regimes are characterized by deep lateritic weathering profiles dominated by secondary minerals, minimal surface
erosion and large quantities of very dilute runoff, but low rates of CO2 consumption per unit area. The Andes and
the Amazonian lowlands exemplify these two extremes, respectively (Gaillardet et al., 1997; Mortatti and Probst,
2003) (Figure 3).

Figure 3. Spatial distribution of the silicate weathering flux (A) and CO2 consumption by silicate weathering (B) in northern
South America, based on river-transport data corrected for atmospheric inputs, emphasizing the contrast between the weathering-
limited regime of the Andes and the transport-limited regime of the Amazon lowlands (from Gaillardet et al., 1997).



Biogenic silica 1441

Copyright © 2008 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 33, 1436–1457 (2008)
DOI: 10.1002/esp

Biogenic Silica in Terrestrial Ecosystems

Among the land biota, only horsetails (Equisitaceae) were traditionally accepted as having an absolute requirement for
Si (Epstein, 1999). Although 19th century plant physiologists recognized that many families of land plants contained
Si in amounts comparable to macronutrients such as P, S, Ca and Mg, or even in some cases K and N, Si was
considered to be a benign but non-essential plant constituent. This reflects both the technical difficulty of purging Si
from experimental cultures and a flawed definition of essentiality (Epstein, 1994, 1999). Notwithstanding this lack of
general interest, a select band of independent-minded plant scientists has made considerable progress in unravelling
the complexities of Si biochemistry.

As befits the status of Si as the second most abundant element in the Earth’s crust, DSi is present in significant
concentrations in soil moisture, apart from highly desilicated tropical weathering profiles rich in Al and Fe oxides
(Jones and Handreck, 1967; Epstein, 1994). Terrestrial higher plants take up Si(OH)4 from the soil solution through
their roots. It is then carried in the transpiration stream and irreversibly deposited as amorphous hydrated silica in
roots, stems, leaves, inflorescences and fruits. Biogenic silica is assigned the general formula [SiOn·OH(4–2n)]m, where n
is <2 and m is very large, implying a range of compositions between the end members mSiO2 and mSi(OH)4 (Sangster
et al., 2001). Discrete silica bodies that form in plant tissues are commonly known as opal phytoliths (Sangster and
Hodson, 1986; Piperno, 1988). Reported leaf SiO2 contents range from <0·5 per cent to ~19 per cent dry weight
(Lewin and Reimann, 1969; Marschner, 1995; Euliss et al., 2005; Struyf and Conley, in press); however, wide
variations are normally observed between different parts of the same plant (Jones and Handreck, 1967; Sangster and
Hodson, 1986; Epstein, 1999; Sangster et al., 2001). As a rule of thumb, BSi is deposited in highest concentrations in
the organs from which water is lost in greatest quantities (Jones and Handreck, 1967).

Silica contents also show marked phylogenetic variability (Jones and Handreck, 1967; Piperno, 1988; Takahashi et al.,
1990). Hodson et al. (2005) found that shoot Si concentrations declined in the order: liverworts > horsetails >
clubmosses > mosses > angiosperms > gymnosperms > ferns. Among the angiosperms, they reported particularly high
concentrations in monocots, including grasses (notably bamboo and wetland taxa such as rice and Phragmites),
sedges, palms and bananas, as well as in a few dicots, including several temperate-forest trees (beech, elm, sugar
maple, oak), stinging nettles, cannabis and some composites (e.g. sunflower). A few conifers (gymnosperms) such as
spruce and larch are noteworthy Si accumulators (Hodson and Sangster, 1999). Silica has also been reported in the
wood of several hundred rainforest hardwood trees (Sangster and Hodson, 1986).

Higher plants can be categorized as high, intermediate and non-Si accumulators (Ma et al., 2001). High accumula-
tors typically exhibit SiO2 concentrations >1 per cent dry weight and take up DSi faster than water; this suggests that
an active-uptake mechanism is involved. Recently, Ma and co-workers identified a Si-transporter gene in rice (Ma
et al., 2004). Plants in the intermediate group, containing ~1 per cent SiO2, absorb DSi passively with water, whereas
non-accumulators, which display much lower BSi contents, effectively exclude it (Raven, 1983; Takahashi et al.,
1990; Richmond and Sussman, 2003). Within any individual group, the amounts of BSi accumulated vary as a
function of soil type, pH, DSi concentration, plant maturation, presence of ectomycorrhizal fungi on plant roots,
transpiration rate and availability of nutrients such as N and P (Jones and Handreck, 1967; Sangster et al., 2001; van
Hees et al., 2004; Euliss et al., 2005).

Various beneficial effects of Si have been identified in higher plants (Jones and Handreck, 1967; McNaughton and
Tarrants, 1983; Raven, 1983; Epstein, 1999; Ma et al., 2001; Richmond and Sussman, 2003). They can be categorized
as structural, physiological and protective (Sangster et al., 2001). Biogenic silica acts as an energetically cheap stiffening
material, promoting root oxygen supply, upright stature, resistance to lodging (flattening by wind or rain) and favourable
exposure of leaves to light. It enhances growth and yield, especially in accumulator species. It reduces vulnerability to
pathogens such as mildew and confers resistance to grazing insects, molluscs and mammals. Silica uptake improves
the supply of P and N, as well as ameliorating heavy metal toxicity by immobilizing Al, Fe, Mn and Zn. In acidic
environments such as conifer forests, tropical rainforests and swamp forests, significant amounts of Al may co-precipitate
with BSi (Hodson and Sangster, 1999; Wüst and Bustin, 2003). Silicification helps to protect against temperature
extremes. It also reduces transpiration, thereby diminishing the impact of drought and salinity stress.

Although primitive plants and fungi are very effective weathering agents, higher plants are more important on a
global scale because their substantially greater primary production necessitates a much larger uptake of water and
nutrients via deeply penetrating root systems (Cochran and Berner, 1996; Hinsinger et al., 2001). They accelerate the
weathering of silicate minerals by increasing the moisture and organic-matter status of soils, by introducing sources of
H+ ions (CO2, detritus and organic acids) into close proximity with mineral surfaces, and by exuding potent chelating
agents such as citric acid, malic acid and non-proteinogenic amino acids (phytosiderophores) into the root micro-
environment (the rhizosphere) (Richards, 1974; Bormann et al., 1998; Kelly et al., 1998; Hinsinger et al., 2001; Lucas,
2001). Together with low-molecular-weight organic acids produced by microorganisms living on root exudates, these
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ligands form soluble complexes with Fe and numerous other metals, increasing the dissolution rates of soil minerals.
Active uptake of essential nutrients by higher plants also helps to destabilize silicate minerals.

The efficacy of higher plants at pumping Si (as opposed to P and metallic cations) from both primary and secondary
minerals was overlooked for many years, despite early experimental work by Lovering and Engel (1967). A recent
resurgence of interest has been led by forest ecologists and agronomists, particularly since the discovery that Si
supplementation is highly beneficial to commercial crops of rice and sugar cane (Takahashi et al., 1990; Datnoff et al.,
2001). Convincing evidence has been gathered not only from culture experiments using known Si-accumulator plants,
but also at the catchment-ecosystem scale, by means of Si budgets drawn up for various temperate and tropical
ecosystems (Table I). For example, Hinsinger et al. (2001) carried out leaching experiments on finely ground basalt in
the presence or absence of four different crop plants: lupin, rape, maize and banana. All four accelerated the dissolu-
tion of basalt. The amount of Si released was approximately doubled by the recognized Si-accumulators maize and
banana, which stored a significant proportion in their tissues.

At the ecosystem scale, geochemists have attempted to evaluate the impact of higher plants on silicate weathering
by comparing the dissolved loads of streams draining paired rocky and vegetated catchments. Cawley et al. (1969),
Drever and Zobrist (1992) and Moulton et al. (2000) found that the weathering flux of Si was enhanced two- to
eightfold by vegetation. On Icelandic basalts, drawdown of atmospheric CO2 by chemical weathering is significantly
correlated with net primary productivity, net ecosystem exchange and percentage wetland cover (Kardjilov et al.,
2006). However, none of these studies quantified the biocycling of Si through living biomass and soils. In contrast,
Bartoli (1983) and Alexandre et al. (1997) pioneered the construction of detailed mass balances for Si that included
biotic fluxes (Table I). Following Bormann et al. (1998) and Moulton et al. (2000), the biogeochemical mass balance
of Si for a terrestrial soil can be written:

Fatmospheric + Fweathering + Flitterfall = Fvegetation uptake + Fsoil storage + Fdrainage (9)

where F is the flux of Si in kg ha−1 year−1; note that Fweathering is the net result of weathering and neoformation of
secondary silicates (Alexandre et al., 1997; Lucas, 2001), Flitterfall includes DSi leached from the canopy by throughfall,
Fsoil storage refers to BSi in soil, and Fdrainage comprises DSi export to groundwater and runoff. Furthermore,

Fvegetation storage = Fvegetation uptake − Flitterfall (10)

Hence, from Equations 9 and 10,

Fweathering = Fvegetation storage + Fsoil storage + Fdrainage − Fatmospheric (11)

Table I summarizes the Si budgets of various forest and grassland ecosystems. The biotic fluxes through forests are
surprisingly large for a supposedly non-essential element, being comparable to macronutrients such as Ca (Markewitz
and Richter, 1998). Biocycling of Si is particularly important in the humid tropics. In Congo rainforest, Alexandre et al.
(1997) found that Fvegetation uptake was about three to four times greater than Fweathering. They showed that c. 92 per cent of
the BSi produced by the vegetation was rapidly recycled by dissolution of the more labile silica particles in leaf litter.
The remaining c. 8 per cent (mainly wood phytoliths) formed a resistant pool that accumulated in the upper soil
horizons for thousands of years.

Graminoid vegetation types such as grasslands (Blecker et al., 2006), savannas and herbaceous wetlands also
contain a high proportion of Si-accumulator plants. These prolific opal-producing landscapes have been christened
‘silica factories’ by Clarke (2003). A partial Si mass balance for bamboo forest on the basaltic island of Réunion, Indian
Ocean, reveals extraordinarily high rates of Si pumping (Meunier et al., 1999; Table 1). Bamboo, a giant C3 grass, acts
as a Si ‘hyperaccumulator’ (Meunier, 2003). On Réunion, it combines high tissue concentrations (c. 12 per cent dry
weight SiO2 in stems) with high primary productivity and susceptibility to natural fires, helping to explain the rapid
desilication of the underlying volcanics and the accumulation of a thick layer of burned phytoliths in the topsoil
(Meunier et al., 2001; Meunier, 2003). Another plant with comparable rates of Si deposition (c. 700 kg Si ha−1 year−1)
is papyrus, a giant C4 sedge that dominates the emergent-macrophyte communities of many African wetlands such as
the Okavango Delta, where phytoliths constitute c. 32 per cent of the inorganic fraction of the underlying peat
(McCarthy et al., 1989). Other largely herbaceous plant communities with high BSi contents in biomass include
tropical palm swamps (Oliva et al., 1999; Braun et al., 2005), temperate tidal marshes (Norris and Hackney, 1999;
Struyf et al., 2007), and alpine and subalpine grasslands. Estimates of Flitterfall for the latter attain 48 kg Si ha−1 year−1

(Carnelli et al., 2001). It is important to note, however, that the silica source for emergent macrophytes in both
freshwater and tidal wetlands is normally DSi exported from upslope/upstream ecosystems rather than in situ weathering.
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The studies summarized in Table I imply that changes in Si pumping by terrestrial vegetation play a role in the
carbon cycle on time-scales as short as 102–103 years. Equation 11 also demonstrates that the DSi load of rivers is
significantly reduced when significant amounts of BSi accumulate in vegetation (in the case of aggrading ecosystems)
and/or plant litter (Markewitz and Richter, 1998). Soils underlying tropical rainforests and temperate grasslands
typically store large quantities (c. 10–30 t Si ha−1) of opal phytoliths (Alexandre et al., 1997; Blecker et al., 2006).
Fdrainage may underestimate Fweathering by ≤45 per cent in forests and ≤97 per cent in grasslands (Table I). In other words,
the uptake of Si by terrestrial ecosystems significantly increases the chemical weathering rate without necessarily
increasing the measured denudation rate. This conclusion applies with particular force to transport-limited landscapes
(Alexandre et al., 1997).

Given the lack of adequate data for many biomes, it is difficult to quantify the total BSi production by terrestrial
ecosystems. Conley (2002) used the total net primary production and average BSi content of land vegetation to derive
an estimate of 60–200 Tmol year−1 (c. 2–6 Gt SiO2 year−1) for the annual fixation of phytolith silica, rivalling the total
marine BSi production of 240 Tmol year−1 (6·7 Gt SiO2 year−1). Most of this enormous quantity is added as litterfall to
the surface of soils. There is still some uncertainty about the factors controlling the relative solubility of different
phytolith types (Wilding and Drees, 1974; Alexandre et al., 1997; Kelly et al., 1998; Meunier, 2003; Fraysse et al.,
2005). Fraysse et al. (2006) found that the solubility product of bamboo phytoliths was 17 times greater than quartz.
Their experiments support recent studies suggesting that the unexpected stability of kaolinite in the upper horizons of
Amazonian ferralsols (Lucas et al., 1993; Lucas, 2001), as well as the concentrations of DSi in drainage waters from
humid tropical, temperate and high-latitude catchments, are controlled by phytolith production and recycling rather
than by dissolution of quartz or other crystalline mineral phases (Oliva et al., 1999; Miretsky et al., 2001; Farmer
et al., 2004; Pokrovsky et al., 2005). The estimated contribution of phytolith dissolution in soils to DSi export from
terrestrial ecosystems ranged from c. 12 per cent in a French pine plantation (Bartoli, 1983), c. 30 per cent in Siberian
larch forest–tundra (Pokrovsky et al., 2005) and c. 75 per cent in Congo rainforest (Alexandre et al., 1997), to ≤90 per
cent in some Hawaiian catchments (Derry et al., 2005) (Figure 4).

The concentration of phytoliths in vegetation, litter and upper soil horizons renders them vulnerable to entrainment
by fluvial and aeolian processes. Higher plants also convert DSi in soil and swamp waters to silt- and sand-sized BSi
particles, which are easily removed by surface runoff (Lovering, 1959; Cary et al., 2005). Fluvial transport of silica in
the form of BSi is another, potentially serious, source of bias in Si budgets for tropical ecosystems. For example, Cary
et al. (2005) found that 1·3–4 wt per cent of the suspended load of rivers in Cameroon consisted of BSi, of which
phytoliths made up 89–99 per cent.

Fragments of burnt grass epidermis from East African and Amazonian lake sediments commonly contain embedded
phytoliths (Wooller et al., 2000; Metcalfe, 2004), implying that savanna fires are a significant source of atmospheric
and riverine particulate SiO2. Charred particles from brush fires form an important component of the suspended load
of the Congo, especially at the start of the wet season (Giresse et al., 1990). The Si cycle in Lake Malawi, the deepest
lake in the East African Rift system (c. 700 m), has been a major focus of the International Decade for the East

Figure 4. The biogeochemical Si cycle in a transport-limited tropical environment, rainforest on deep-weathered basalt, Hawaii,
showing measured δ30Si and Ge/Si values. From data in Kurtz et al. (2002), Derry et al. (2005) and Ziegler et al. (2005).



Biogenic silica 1445

Copyright © 2008 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 33, 1436–1457 (2008)
DOI: 10.1002/esp

African Lakes (IDEAL) (Johnson et al., 2001, 2002; Bootsma et al., 2003). Bootsma et al. (2003) estimated that BSi
accounted for 60 per cent of its riverine Si input. Charred phytoliths from maize and natural vegetation predominated.
Dust storms provide another mechanism by which phytoliths are exported from drylands to more humid areas or to the
oceans (Baker, 1959; Twiss et al., 1969; Melia, 1984; Bowdery, 1999). Transported BSi is believed to play an
important role in the cementation of regolith to form weathering-resistant hardpans and silcretes (Clarke, 2003).

Biogenic Silica in Aquatic Ecosystems

Freshwater organisms actively cycle DSi leaking from terrestrial ecosystems. Although few submerged or floating
vascular plants have been shown to contain significant amounts of BSi (Lovering, 1959; Sangster and Hodson, 1986),
the number is increasing (Hodson et al., 2005). Trapa natans (water chestnut) and Ruppia maritima, which colonizes
salt lakes, are notable examples (Lovering, 1959; Hodson et al., 2005).

On the other hand, Si is an essential nutrient for a small number of highly significant aquatic ‘silica bioengineers’
including diatoms, sponges and chrysophytes (flagellates) (Simpson and Volcani, 1981). Diatoms and chrysophytes
also use dissolved inorganic C for photosynthesis. Diatoms are generally assumed to represent the most important Si
sink in lakes and rivers, in view of their proliferation across a wide spectrum of depth habitats, water chemistries and
flow conditions (Battarbee et al., 2001). They synthesize DSi into nanospheres in the presence of proteins known as
silaffins (Kröger et al., 1999). These spheres then become the building blocks for frustule formation. An organic
membrane protects the frustule from dissolution; thick polysaccharide gels associated with certain species add to this
coating. The membrane aids the adsorption of dissolution-retarding cations such as Fe and Al (Lewin, 1961; van
Bennekom, 1981), as well as providing a physical barrier. It decomposes rapidly on death, partly as a result of
bacterial activity, which hastens the dissolution process, hinting at a bacterial loop in the Si cycle (Bidle et al., 2003).

Siliceous sponges have a worldwide distribution in marine and fresh waters. They flourish in deep lakes with
hydrothermal Si inputs such as Baikal, Tanganyika and Taupo (de Ronde et al., 2002; Belikov et al., 2005), but are
also common in many shallower waterbodies, contributing c. 40 per cent of the BSi in the surface sediments of Florida
lakes (Conley and Schelske, 1993). Biosilicification by sponges is similar to diatoms. They secrete needle-like spicules,
which provide structural support and act as a defence against predation. The spicules enclose an axial organic filament
containing the protein silicatein, which promotes condensation of amorphous silica. Maldonado et al. (2005) argued
that the role of sponges in the global biogeochemical Si cycle has been underestimated, especially as sponge spicules
are an order of magnitude larger and have a lower specific surface area than diatom frustules. A higher Al content may
also make them significantly more resistant to dissolution (Conley and Schelske, 1993; Maldonado et al., 2005).

Chrysophyte microalgae are efficient competitors for nutrients, but are more restricted in distribution than diatoms
or sponges. They are common in the cold, oligotrophic waters of Arctic and Antarctic lakes (Sandgren, 1988; Zeeb
and Smol, 2001) as well as in some tropical swamps (Ruppert et al., 1993). Unlike diatoms, chrysophytes are
relatively rare in alkaline, eutrophic waters, although exceptions exist. They adopt various life forms and are espe-
cially common in the plankton of lakes of low trophic status, where they use their flagella to stay in the pelagic zone
and compete for nutrients. Their siliceous components, including scales and cysts, are synthesized in a similar way to
those of sponges and diatoms.

Lakes are efficient silica traps. In Lake Malawi, diatoms dominate the phytoplankton during the dry season when
upwelling brings nutrients to the surface from the anoxic hypolimnion. Only c. 1 per cent of the external Si input
to the lake (c. 600–1100 mmol Si m−2 year−1) is lost through the outflow. In contrast, diatom production cycles
c. 9000 mmol Si m−2 year−1, of which 7–11 per cent is buried in the sediments (Bootsma et al., 2003). This study
indicates that the sediments of deep lakes in unglaciated areas represent permanent sinks in the biogeochemical Si
cycle on all but plate-tectonic time-scales, although different lakes leak varying amounts of DSi; for example 35 per
cent of the inputs pass through Lake Superior (Johnson and Eisenreich, 1979) and 20 per cent through Lake Michigan
(Schelske, 1985), both of which have larger outflows than Lake Malawi. Shallower lakes are less acquisitive and may
release silica if they desiccate. Vast expanses of early Holocene diatomite in the Sahara are now being deflated and
transported to the equatorial Atlantic and Amazonia as aeolian dust (Melia, 1984; Koren et al., 2006). Under the drier,
windier climate of the Last Glacial Maximum (LGM), the aeolian flux of BSi was greatly strengthened (Pokras and
Mix, 1985). These examples suggest that lakes store significant amounts of BSi on time-scales varying from 1–10
years in hydrologically open systems to 106 years in the case of deep closed basins.

Tropical rivers dominate the fluvial transport of DSi to the oceans (Figure 2). Not surprisingly, siliceous organisms
sequester large amounts of DSi (Saunders and Lewis Jr III, 1989), although Si recycling may be more rapid and
storage of BSi in river channels and floodplains less permanent than in lakes. For example, sponges living on trees in
the seasonally flooded forests along the Río Negro (a highly transport-limited tributary of the Amazon: Figure 3)
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convert large amounts of DSi to spicules that accumulate in alluvial deposits (Chauvel et al., 1996). Extensive diatom
growth on submerged wood leads to progressive silicification by silica gel, forming an additional Si storage (Konhauser
et al., 1992). The bed of the main Amazon near Manaus is also carpeted with sponges, despite the high turbidity of the
water.

On a global basis, riverine ecosystems convert c. 16 per cent of the gross fluvial DSi load to suspended BSi (mainly
diatoms), thereby decreasing the net export of DSi to the oceans (Conley, 1997). Human impacts such as eutrophication,
modification of river channels and manipulation of macrophyte communities also affect silica transport (Conley et al.,
1993; Humborg et al., 2000; Struyf and Conley, in press); the construction of reservoirs being an extreme example of
how human agency increases fluvial filtering of Si on the continents. Declining river flow and DSi availability are
exerting a negative influence on many lakes and coastal waters such as the Black and Baltic Seas by favouring toxic
blooms of N-fixing cyanobacteria or flagellates (Humborg et al., 2000; Schindler, 2006).

New Analytical Techniques for the Study of Si Biogeochemistry

Growing interest in the Si cycle has spawned a variety of geochemical techniques for the measurement of BSi
concentrations in soils and sediments (Conley and Schelske, 2001). The one in most common use is wet chemical
digestion in hot alkali (Na2CO3 or NaOH) (Conley, 1998; Saccone et al., 2006). This is relatively straightforward and
reproducible, provided that allowance is made for variations in dissolution rate between different forms of BSi such as
diatoms and sponge spicules (Conley and Schelske, 1993). However, the application of BSi analysis to continental
sediments, especially those of small lakes, seems likely be most insightful when combined with an assessment of the
relative importance of the different terrestrial and aquatic microfossil types present (Smol et al., 2001), even if this is
based on smear slides rather than on full palaeoecological analyses.

Various isotopic techniques are currently being applied to reconstruct the environmental conditions prevailing when
biogenic opal was formed. The oxygen-isotope record in diatoms has been hailed as a particularly useful tool for
palaeoclimate reconstruction in carbonate-free systems (Leng and Barker, 2006). In freshwater lakes, the 18O/16O
signal mainly reflects past changes in the isotope values of precipitation, which are strongly correlated with air
temperature in mid- to high latitudes and with precipitation amount in the tropics (Rozanski et al., 1993; Barker et al.,
2001; Shemesh et al., 2001). Interpretation of oxygen-isotope measurements on opal phytoliths is more complex in
view of the progressive enrichment in the heavier isotope between plant roots and aerial parts, where transpiration
takes place in response to evaporative demand (Shahack-Gross et al., 1996; Webb and Longstaffe, 2000, 2003, 2006).
It is also possible to measure the stable carbon-isotope composition of organic inclusions in BSi: this provides a direct
link to the carbon cycle at the time of plant or diatom growth (Kelly et al., 1991; Singer and Shemesh, 1995).

Silicon isotopes hold great potential as tracers of the terrestrial Si cycle and its influence on the marine Si cycle
(Douthitt, 1982; Lucas et al., 1993; Ding et al., 1996; De La Rocha, 2002, 2006; Basile-Doelsch et al., 2005; Basile-
Doelsch, 2006; Georg et al., 2006). The cosmogenic radionuclide 32Si (half-life c. 140–178 years) is being actively
researched as a dating tool for waters and sediments of late Holocene age (Morgenstern et al., 1996; Nijampurkar
et al., 1998). Silicon also possesses three stable isotopes, 28Si, 29Si and 30Si, which are fractionated by chemical and
biological processes. The most commonly used isotope parameter is δ 30Si, defined as follows:

δ 30Si = [(Rsample /Rstandard) − 1] × 103 (12)

where R = 30Si/28Si (Ding et al., 1996). Measured δ 30Si values are expressed in per mille (‰) with respect to the NBS-
28 standard. δ 29Si is sometimes measured (Georg et al., 2006; Opfergelt et al., 2006), but exhibits roughly half the
signal amplitude.

When Si precipitates from aqueous solution to form secondary minerals or is sequestered by organisms, the light
isotope 28Si is preferentially partitioned into the precipitate, which acquires depleted (lower) values of δ29Si and δ 30Si
compared with the residual fluid, in which the heavier isotopes 29Si and 30Si accumulate. Hence, secondary clays and
bulk soils display more negative isotope values than primary rock minerals, whereas those of ambient waters tend to
be more positive (Ding et al., 1996; Basile-Doelsch, 2006) (Figure 4). In transport-limited environments such as
deeply weathered Hawaiian basalts, the δ 30Si values of bulk soil become progressively more negative with age,
although the interpretation of Si isotope profiles is complicated by surface inputs of phytoliths and aeolian dust, which
have higher δ 30Si values (Ziegler et al., 2005). The isotopically most depleted continental Si pool (with δ 30Si values as
low as −7·5‰) is found in groundwater silcretes formed by multistage dissolution and recrystallization of quartz
(Basile-Doelsch et al., 2005). In contrast, measured δ 30Si values for DSi in soil moisture and surface waters range
from −1·1 to +3·4‰ (De La Rocha et al., 2000; Ding et al., 2004; Ziegler et al., 2005; Basile-Doelsch, 2006).
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In plants, which represent a closed system for Si, cumulative isotopic enrichment of DSi, and hence BSi, occurs as
silica is precipitated along the water-flow paths from roots through stems to leaves or inflorescences and seeds (Ding et al.,
2005; Opfergelt et al., 2006; Hodson et al., 2008). This process, known as ‘Rayleigh distillation’ (De La Rocha, 2002)
is beautifully illustrated by paddy rice, which exhibits δ 30Si values in BSi ranging from −0·8‰ in roots and −0·5 to
+0·4‰ in stems and leaves, to +6.1‰ in rice grains (Ding et al., 2005). Unfortunately, only accumulator plants such
as horsetail, bamboo, banana, rice and wheat have been investigated to date (Douthitt, 1982; Ding et al., 2005, 2008;
Opfergelt et al., 2006; Hodson et al., 2008). It is not clear whether their Si-isotope values are representative of
terrestrial biomass as a whole, or indeed whether systematic differences should be anticipated between different
taxonomic groups, life forms and metabolic pathways.

Aquatic organisms also fractionate Si isotopes. Marine diatoms generally display near-zero to positive values (−0·3
to +2·6‰), resulting from progressive isotopic enrichment of surface waters as DSi is depleted during blooms (De La
Rocha, 2002; Varela et al., 2004). Although few measurements have been made in lakes, a comparable shift towards
higher isotope values in both DSi and BSi is believed to occur in the epilimnion during diatom production (Alleman
et al., 2005). In contrast, marine sponges, which occupy benthic habitats and have a lower affinity for silica than
diatoms, exhibit the lowest δ 30Si values so far measured in biological systems (−3·7 to −1·2‰) (Douthitt, 1982; De La
Rocha, 2003); unfortunately no data are available for freshwater species. Once their isotope systematics have been
investigated in sufficient detail, however, the degree of isotopic enrichment of DSi in surface waters (rivers and lakes)
should provide a means of quantifying Si retention (fluvial filtering) by aquatic ecosystems. For example, Ding et al.
(2004) attributed the strong downstream increase in the δ 30Si values of DSi in the Yangtse River, from +0·7 to +3·4‰,
to trapping of silica by wetlands, rice paddies and lakes. These enhanced isotope values contrast markedly with those
measured by Georg et al. (2006) in DSi from a typical rocky, weathering-limited Alpine catchment (+0·5 to +1·1‰).
On a glacial–interglacial time-scale, variations in the riverine output of DSi or its mean δ 30Si may influence the
average δ 30Si value of the world ocean (De La Rocha, 2006).

Ge/Si ratios also show great promise as a tracer for the biogeochemical Si cycle, with the potential to resolve
ambiguities in the terrestrial Si-isotope record. Germanium, a trace element in the same group of the periodic table,
behaves like a ‘pseudoisotope’ of silicon (Kurtz et al., 2002), substituting for Si in the lattices of aluminosilicate
minerals, notably hornblende, biotite mica and clays such as kaolinite (Ge/Si c. 2–7 × 10−6). In contrast, quartz (pure
SiO2) typically has a low Ge content (Ge/Si c. 0·5 × 10−6) (Filippelli et al., 2000; Kurtz et al., 2002; Derry et al.,
2006). Germanium exists in aqueous solution as Ge(OH)4. The average molar Ge/Si ratio of unpolluted stream waters,
c. 0·6 × 10−6 ± 10 per cent, is significantly lower than typical bedrock ratios of c. 1–3 × 10−6 (Froelich et al., 1992;
Kurtz et al., 2002). Murnane and Stallard (1990) found that the Ge/Si ratios of Orinoco tributaries increased with
chemical-weathering intensity, defined as the fraction of total Si dissolved from bedrock during weathering. The
lowest DSi concentrations and highest Ge/Si ratios occurred in transport-limited catchments, regardless of lithology.
According to the two-component Murnane–Stallard–Froelich (MSF) model of chemical weathering (Froelich et al.,
1992), this pattern arises from preferential retention of Ge in secondary aluminosilicates such as allophane (an
amorphous hydroxyaluminosilicate: Figure 1) and kaolinite. The Ge/Si ratio of river waters then depends on the
relative importance of a low-Ge end member derived from incongruent dissolution of fresh rock minerals, which
dominates in weathering-limited environments (cf. Equation 5) and a high-Ge end member produced by congruent
dissolution of pedogenic minerals, which dominates in transport-limited systems (cf. Equation 6) (Kurtz et al., 2002).

The MSF model has recently been challenged by an elegant biogeochemical study of the runoff from tropical
rainforest overlying deeply weathered Hawaiian basalt. Derry et al. (2005) established that the Ge/Si ratios of
streamwaters were controlled by mixing between a Si-rich, Ge-poor component (Ge/Si ~0·25 × 10−6) derived from
dissolution of opal phytoliths in upper soil horizons, and a Si-poor component with a relatively high Ge/Si ratio (Ge/
Si ~2·6 × 10−6), originating through dissolution of secondary pedogenic minerals. On a discharge-weighted basis, BSi
contributed 68–90 per cent of the DSi transported by Hawaiian stream water (Figure 4). Their analysis supports the
catchment-ecosystem studies summarized in Table I. The general implication is that three possible sources of DSi
must be considered in most geomorphological systems: weathering of primary rock minerals, weathering of pedogenic
silicates and dissolution of BSi; hence the potential benefit of applying Si-isotope and Ge/Si tracers in combination to
understand the dynamics of specific systems.

The Derry et al. (2005) study has important implications for our understanding of global patterns of silicate
weathering and CO2 drawdown on a Quaternary time-scale. Palaeoceanographers have attempted to reconstruct
glacial–interglacial variations in continental weathering using the Ge/Si ratios of diatoms from deep-sea sediments,
assuming that no significant fractionation of Ge and Si takes place during silicification (Froelich et al., 1992; Bareille
et al., 1998) (Figure 5). Cores from the Southern Ocean show a consistent pattern of variation in Ge/Si over the past
five glacial–interglacial cycles. The average ratio of Holocene core tops (0·69 ± 0·03 × 10−6) is not significantly differ-
ent from modern seawater, whereas the corresponding value for the LGM was 0·55 ± 0·03 × 10−6 (Bareille et al.,
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Figure 5. Glacial–interglacial variations in the Ge/Si ratios of diatoms from Southern Ocean sediment cores (from Froelich et al.,
1992).

1998). Based on the implied c. 20 per cent reduction in the average Ge/Si ratio of river water, Froelich et al. (1992)
argued that weathering of primary rock minerals was of greater relative importance during glacial times than today,
resulting in a doubling of the riverine DSi flux. This conclusion made some geochemists uncomfortable, leading to
attempts to explain the observed glacial–interglacial signal as the result of temporal variations in opal diagenesis
(Hammond et al., 2000; King et al., 2000). Jones et al. (2002) failed to reproduce the observed Ge/Si decrease in a
global geochemical model of the LGM. All these studies, however, neglected the possibility that significant reserves of
opal phytoliths with low Ge/Si ratios (~0·25 × 10−6) (Derry et al., 2005) were mobilized from continental ecosystems
by enhanced erosion and vegetation degradation during glacial times. This process could theoretically decouple
variations in Ge/Si ratios in marine sediments from those of other lithogenic tracers such as Sr, Os and Pb isotopes
(Henderson et al., 1994; Oxburgh, 1998; Foster and Vance, 2006).

Case Studies of Late Quaternary Lake Sediments

Reconstructions of Quaternary changes in continental silicate weathering and CO2 drawdown are currently dominated
by geochemical analyses of marine cores and global geochemical models, which treat the land surface as devoid of
life. This situation is unbalanced and unrealistic. Lake sediments provide a record of past environmental changes
based on a wide array of terrestrial and aquatic indicators (Smol et al., 2001). The following examples illustrate the
scope for reconstructing past changes in the continental Si cycle, using multiproxy palaeolimnological data to shed
light on biocycling by terrestrial and freshwater ecosystems.

In Lake Malawi, the mass accumulation rate (MAR) of BSi, consisting mainly of diatoms, approximately doubled
between the LGM and the Holocene (Johnson et al., 2002) (Figure 6). Assuming that the sediment depocentre did not
shift significantly, a large increase in silica burial on a multimillennial time-scale could be sustained only by a
corresponding increase in the riverine input of DSi (Bootsma et al., 2003). The low BSi MAR during glacial times
therefore can be attributed to a drop in the net output of DSi from the catchment under a cooler, drier climate, which
also resulted in an increased proportion of periphytic diatoms (Johnson et al., 2002). Further investigation using Si
isotopes and/or Ge/Si ratios might determine whether this reduction in DSi output was associated with a decrease in
silicate weathering or an increase in fluvial filtering of Si within the drainage basin.

A pioneering application of Ge/Si ratios to lake sediments was reported by Filippelli et al. (2000), who analysed
two, carefully cleaned samples of Holocene diatoms from Dry Lake, a small moraine-dammed basin located at 2763 m
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a.s.l. in the San Bernadino Mountains, California (Figure 7). The surrounding slopes consist of biotite–muscovite gneiss
and granite, overlain by weakly developed alpine soils under open pine forest. Diatoms from the basal lake sediments
(c. 8000 years BP) displayed a Ge/Si ratio of 0·79 × 10−6, more than twice as high as in sediments deposited during the
past 100 years (0·33–0·35 × 10−6). Since diatoms do not fractionate Ge and Si with respect to their source water,
Filippelli et al. (2000) attributed the observed temporal decrease in Ge/Si to preferential early Holocene weathering of
micas with high Ge/Si ratios (Figure 7). An alternative view based on the Derry et al. (2005) model would be that
post-glacial vegetation succession resulted in increasingly tight biocycling of Si, leading to the creation of a labile

Figure 6. The glacial–interglacial increase in BSi accumulation (mainly diatoms) in Lake Malawi, southeastern Africa. The δ18O
record in the GRIP ice core, Greenland is shown for comparison. (From Johnson TC, Brown ET, McManus J, Barry S, Barker PA,
Gasse F. 2002. A high-resolution paleoclimate record spanning the past 25 000 years in southern East Africa. Science 296: 113–132.
Reprinted with permission from A.A.A.S.).

Figure 7. The Holocene decrease in the Ge/Si ratios of diatoms (×10−6) in a core from Dry Lake, California, compared with
modern data for rocks, soils and waters (from Filippelli et al., 2000).
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Figure 8. Palaeoecological evidence for glacial–interglacial changes in Si biocycling by the catchment–lake ecosystem of Lake
Rutundu, Mount Kenya, based on lacustrine-sediment fluxes (from Street-Perrott et al., 2008).

pool of stored BSi with low Ge/Si values in soils (and presumably a corresponding reduction in DSi output to
streams). Clearly, a carefully chosen package of geochemical, isotopic and palaeoecological analyses would help to
clarify the causes of long-term changes in the Si cycle within this weathering-limited geomorphological system.

Lake Rutundu is a small, closed maar lake situated at 3078 m a.s.l. in tall subalpine shrubland on Mount Kenya,
East Africa. A core extending back to c. 38 300 years BP has been analysed for bulk and molecular carbon isotopes
(Street-Perrott et al., 2004), δ18O and δ 30Si in diatom silica, and a wide range of sedimentological and palaeoecological
indicators including magnetic susceptibility, pollen, grass epidermis, diatoms and opal phytoliths (Street-Perrott et al.,
2007; Street-Perrott et al., 2008) (Figure 8). High δ18O values in diatoms show that the climate prevailing during the
LGM (38 300–14 300 years BP) was relatively dry (Street-Perrott et al., 2008). The lake was surrounded by a sparse,
C4-dominated grassland dotted with fire-tolerant shrubs (Street-Perrott et al., 2007). An increased input of soil nutri-
ents, coupled with enhanced leakage of DSi from the catchment, led to a much higher accumulation rate of diatoms
than today (Street-Perrott et al., 2008). At c. 14 300 years BP, the transition to a warmer and wetter, but markedly
seasonal, climate resulted in the establishment of a lush, mixed C3–C4 montane grassland subject to frequent grass
fires, revealed by maxima in the fluxes of graminoid pollen, charred grass epidermis and grass phytoliths. A corre-
sponding peak of spherical rugose phytoliths (Scurfield et al., 1974) may represent wood from burned rainforest trees
or subalpine shrubs. Meanwhile, the output of DSi and eroded soil from the catchment decreased, mainly as a result of
increased graminoid biomass, leading to a collapse of diatom production in the lake. Since c. 9500 years BP, a decline
in seasonal contrast and fire frequency has permitted colonization by tall subalpine shrubs with a C3 grass understorey.
Effective retention of Si by the catchment ecosystem is implied by low Holocene burial rates of both opal phytoliths
and diatoms. This study suggests that glacial–interglacial variations in the relative extent and biomass of woody and
herbaceous vegetation across intertropical Africa (Barker et al., 2004) would have had a significant impact on fluvial
outputs of DSi and BSi. It also shows that large quantities of phytoliths were lofted by grassland fires and transported
in fragments of charred grass epidermis.

Conclusions

Geochemists have recognized since the late 19th century that the global carbon and silicon cycles are coupled on
geological time-scales by chemical weathering of silicate minerals. Biologists discovered even earlier that accumula-
tor plants and some freshwater organisms take up large quantities of Si from rocks, soils, lakes and rivers. Yet these
separate bodies of knowledge were never integrated to arrive at an overall understanding of the biogeochemical cycle
of Si and its significance for geomorphology and earth-system science. Almost every molecule of dissolved silica that
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finds its way into drainage waters (with the possible exception of some glacial melt streams) has first passed through
an ecosystem, even if only a bacterial community living in the weathering rinds of boulders.

Higher plants accelerate silicate weathering by a factor of at least two to eight compared with bare rock surfaces.
They are particularly effective in basaltic terrain. Measured biotic fluxes of Si through grassland and broad-leaved
forest ecosystems are about two to ten times times larger than the net release of Si by mineral weathering (Table I),
while in lakes, cycling of Si by diatoms may also exceed the annual input of DSi by an order of magnitude. In many
parts of the world, the solubility of opal phytoliths controls the concentrations of DSi in runoff. At the present day,
c. 5–50 per cent of the measured annual BSi production by terrestrial and freshwater ecosystems goes into storage,
most notably in grasslands and young forests (Table I). At regional to global scales, fluvial filtering by biomass, soil
and sediment storages may introduce substantial negative bias into estimates of denudation based on the dissolved
load of rivers, particularly in transport-limited environments. In the case of Si, potential sources of error include
sequestration of BSi as opal phytoliths in soils and aggrading ecosystems, accumulation of siliceous microfossils in
alluvial, lacustrine and swamp sediments, and silicification of dead wood in tropical swamp forests. Biogenic silica
forms c. 1–18 per cent of the suspended load of major rivers (Conley, 1997). It is also transported long distances by
wind in dust and charred grass fragments. Hence, global models of the coupling between the C and Si cycles on
decadal to glacial–interglacial time-scales must take into account the response of continental ecosystems to climatic
and anthropogenic perturbations, including temporal variations in the effectiveness of fluvial filtering and aeolian
transport.

Despite the recent advances summarized in this paper, there are still serious gaps in present understanding of the
terrestrial Si cycle – few data exist for tropical savannas, wetlands, shrublands and tropical dry forests, for example.
New geochemical and isotopic tracers hold considerable promise for quantifying both past and present biocycling of
Si. They include the cosmogenic (32Si) and stable isotopes of Si, other stable isotopes in BSi, and Ge/Si ratios.
Measurement of BSi contents of sediments by alkali digestion should ideally be supplemented by microscopic analy-
sis in order to evaluate the proportions derived from different sources; it is not valid to assume that all BSi particles
present in soils are phytoliths and all those in waterlain sediments are diatoms. Multiproxy palaeolimnological studies
of Quaternary lake sediments represent an underexploited but potentially valuable source of data on past changes in Si
biocycling by both terrestrial and aquatic ecosystems, and will play a key role in validating future generations of
global biogeochemical models.
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